RAPID INFILTRATION BASIN EVALUATION REPORT COLD SPRING VALLEY WASTE WATER TREATMENT FACILITY WASHOE COUNTY, NEVADA

Prepared for:

Kennedy/Jenks Consultants 5190 Neil Road, Suite 210 Reno, NV 89502

Prepared by:

BROADBENT & ASSOCIATES, INC. 2000 Kirman Avenue Reno, Nevada 89502 (775) 322-7969

July, 2003

Project No. 03-02-116

July 25, 2003

Project No. 03-02-116

Kennedy/Jenks Consultants 5190 Neil Road, Suite 210 Reno, NV 89502

Attn: Mrs. Lynn Orphan, P.E.

RE: Rapid Infiltration Basin (RIB) Evaluation Report, Cold Spring Valley Waste Water

Treatment Facility, Washoe County, NV.

Dear Mrs. Orphan:

Broadbent & Associates, Inc. (BAI) is pleased to present this *Rapid Infiltration Basin (RIB) Evaluation Report* for the Cold Spring Valley Waste Water Treatment Facility located in northern Cold Spring Valley, Washoe County, NV. BAI conducted activities documented herein as a sub-consultant to Kennedy/Jenks Consultants (K/J), while K/J is contracting directly with the Washoe County Department of Water Resources (DWR). Conducted activities included three basic tasks: 1) Evaluation of the existing RIBs; 2) Evaluation and siting of potential new RIB locations; and 3) preparation of the enclosed report. Details of conducted activities, results, and conclusions are provided within the report.

Should you have questions or require additional information, please do not hesitate to contact us.

Sincerely, BROADBENT & ASSOCIATES, INC.

Lee W. Williams, Senior Staff Geologist

Douglas G. Guerrant, R.G., C.HG., C.E.M. Principal Hydrogeologist

Enclosure: Rapid Infiltration Basin Evaluation Report, Cold Spring Valley Waste Water Treatment Facility, Washoe County, Nevada

TABLE OF CONTENTS

			<u>Page</u>	
1.	Introduction	on/Purpose	1	
2.	Existing R 2.1. Cu 2.2. Do 2.3. Dis	1 1 2 3		
3.	3.1. Pu3.2. Su3.3. Do	Locations	4 4 4 5 6	
4.	Ground-W	/ater Flow & Solute Transport Model Up-Date	6	
5.	Summary/	/Discussion	7	
6.	Conclusio	ns	8	
7.	Reference	es	8	
		TABLES		
Та	ble 1:	RIB Operation and Testing Data for the Cold Spring Valley Wa Treatment Facility, Cold Spring Valley, Washoe County, Neva		
Та	ble 2:	Double Ring Infiltrometer Test Results, Cold Spring Valley, Wa County, Nevada.	ashoe	
		DRAWINGS		
Dr	awing 1:	North Cold Spring Valley Geologic Map, Cold Spring Valley, N	evada.	
٠		FIGURES		
Fiç	gure 1:	SW - NE Cross Section A – A'.		
Figure 2:		S – N Cross Section B – B'.		
Fi	gure 3:	Depth to Water versus Time for MW-1S, 2S, 3S, and 4S, Cold Valley, Washoe County, Nevada.	l Spring	

Depth to Water versus Time for MW-2D, 3D, and 4D, Cold Spring Valley, Figure 4:

Washoe County, Nevada.

Depth to Water & Sweger Well Pumping Data versus Time for MW-2D & 4D, Cold Spring Valley, Washoe County, Nevada. Figure 5:

APPENDICES

RIB Test Data Sheets Appendix A:

Appendix B: **Boring Logs**

1.0 INTRODUCTION/PURPOSE

Based upon on-going residential growth in the north Cold Spring Valley area, the existing Cold Spring Valley Waste Water Treatment Facility (CSWWTF) will need to be expanded to accommodate the increased loading associated with continued growth. The current facility has six rapid infiltration basins (RIBs) that are utilized to infiltrate treated waster water effluent. Furthermore, it has been reported that the existing RIBs are not performing as originally anticipated, in that they are not capable of transmitting/infiltrating at the design capacity. Given this information, it is likely that additional RIBs will be needed and that additional locations may be required to better accommodate future anticipated flows.

The purpose of this investigation was to evaluate the existing RIBs and then rerate their infiltration capacities, to evaluate and test additional areas as potential new RIB locations for Treatment Facility expansion, and to incorporate the new infiltration and flow information into the existing ground-water flow and solute transport model for this area to determine if there will be any significant impacts to the long term water resources of northern Cold Spring Valley.

2.0 EXISTING RIB EVALUATION ACTIVITIES

2.1 CURRENT TREATMENT FACILITY OPERATIONS

As indicated above, the CSWWTF, in its current state, consists of six RIBs. In general, only one RIB receives discharge at any given time. Since the facility was opened in late-1997, discharge flows have increased from approximately 10,000 gallons per day (gpd) to approximately 120,000 gpd.

Drawing 1 (a geologic map of the area discussed below) depicts the current plant configuration. The RIBs are numbered 1-6. The rotation pattern for use of the RIBs is as follows: #1, #4, #5, #2, #3, and then #6. Personnel from SPB utilities (the CSWWTF operation and maintenance contractor) have indicated that RIBs #1 and #2 perform poorly, while RIBs #5 and #6 perform the best. Furthermore, they have indicated that RIBs #1 and #2 take about one week to load and about one month to dry up, while RIBs #5 and #6 take about one month to load and about one week to dry up. RIBs #3 and #4 perform somewhere in between.

Unfortunately, specific flow data is readily not available on a per RIB basis. However, SPB Utilities was able to provide a schedule of time periods when each RIB was being loaded for the period of July, 1999 – June, 2003. Table 1 provides a tabulation of estimated flows and resulting estimated infiltration rates per RIB for the last two loading events for each RIB (covering the period of September, 2002 through June, 2003). Review of Table 2 indicates that average infiltration rates range from 0.022 inches/hour (~17,700 gpd) to 0.031 inches/hour (~28,000 gpd) for RIBs #1 and #2, respectively. Average infiltration rates for RIBs #3 and #4 are 0.082 inches/hour (~71,300 gpd) and 0.072 inches/hour (~75,000 gpd), respectively. Average infiltration

rates for RIBs #5 and #6 were 0.101 inches/hour (~87,000 gpd) and 0.107 inches/hour (~91,600 gpd), respectively.

Review of the Dewante and Stowell 1991 report entitled *Proposed Wastewater Facilities, Cold Spring Valley* (Dewante and Stowell, 1991) indicates that the design loading rate for the existing RIBs was approximately 40,000 gpd/acre, or 0.06 inches/hr. This design rate was derived from double ring infiltrometer test results for tests conducted by Pezonella Associates, Inc. in 1991 in the area of the CSWWTP (Pezonella, 1991). The design rate was derived by taking 4.5% of the actual double ring test results, as suggested in the US EPA process design manual entitled *Land Treatment of Municipal Wastewater* (October, 1981).

As a means of evaluating actual performance rates versus the design rate, Table 1 was complied. Review of Table 1 indicates that there is a range in the level of actual RIB performance of 36% to 157% relative to the design rate, with RIB #1 being the worst performer and RIB #6 being the best.

2.2 DOUBLE RING INFILTROMETER TESTING ACTIVITIES

BAI personnel conducted an investigation of the existing RIBs to evaluate their current performance on June 25 and 26, 2003. Two double ring infiltrometer tests were conducted in both RIB #2 and RIB #6: one at the current RIB surface and one at a depth of approximately 4.0-5.0 below the current surface. Each test area was set up with a four-foot diameter outer ring and a two-foot diameter inner ring. The outer rings for the at-depth tests were constructed by excavating an approximate four-foot diameter pit to the test depth. Excavated materials were used to construct berms to act as outer rings for the surface tests. A two-foot diameter steel inner ring was driven approximately two inches into the test surface. Yardsticks were driven into the surface within the inner rings in order to facilitate water level measurements within the inner rings.

Lithology encountered during construction of the rings in RIBs #2 and #6 generally consisted of a brown silty sand of medium density. However, in RIB #2 the upper 1.5 feet consisted of a dark brown dense silt-clay mix with a trace of sand. A one-inch thick lens of red clayey silt with a trace of sand was also observed at a depth of 2.75 feet in RIB #2. The silt-clay mix observed in RIB #2 exhibited desiccation cracks that were expressed at the surface. The surface of RIBs #1, #2 and #3 exhibited similar desiccation cracks and silt-clay mix. RIBs #4 and #5 were covered with water as well as aquatic plants, and therefore, could not be observed. The surface of RIB #6 consisted of the brown silty sand encountered during ring construction, however, the desiccation cracking but was not as pronounced as the cracks in the silt-clay mix found in RIB #2.

Once each ring was constructed, it was pre-soaked and then a six-hour infiltration test was conducted for each area. Water used for the test was effluent pumped from the CSWWTF. Water levels between the inner and outer ring were kept similar by adding water to the outer ring when necessary. Water was maintained in both rings for the duration of each test. Collected infiltration data for these tests is provided in Table 1. Additionally, the field data sheets for these tests are provided in Appendix A.

Results from the double ring infiltrometer tests discussed above were compared with actual operation flow data provided by SPB Utilities, as presented in Table 1. Review of Table 1 indicates that the estimated operational infiltration rate for the current surface of RIB #2 is 42% of the rate estimated by the double ring infiltrometer test $(0.03"/hr \div 0.07"/hr)$. The estimated operational infiltration rate for RIB #2 at a depth of 4.5 feet below the current surface is only 0.4% of the rate estimated by the double ring infiltrometer test $(.03"/hr \div 7.15"/hr)$, meaning the at depth double ring test rate is much greater than the current operational rate at the surface. Therefore, it seems clear that the infiltration rate for RIB #2 (and likely RIB #1) could be significantly enhanced by excavating the top 2.0 - 3.0 feet of this RIB to remove the fine textured materials (to a depth below the thin red clay lens, where present) and to expose the underlying more course textured sands.

Review of Table 1 relative to RIB #6 indicates that the estimated operational infiltration rate for the current surface of RIB #6 is 11% of the rate estimated by the double ring infiltrometer test, while the estimated operational infiltration rate for RIB #6 at a depth of 4.0 feet below the current surface is 19.0% of the rate estimated by the double ring infiltrometer test. Accordingly, there does not appear to be a significant difference between the two tests conducted on RIB #6.

2.3 DISCUSSION

Based upon the above information, it appears that, in general, the existing RIBs are performing at rates similar to the design rates of 40,000 gpd (0.06"/hr), but that RIBs #1 and #2 rates could be significantly increased by removing the top 2.0-3.0 of overburden to expose some underlying coarser materials. Re-rated information for each RIB, based upon actual operation data, is provided in Table 1, both in gallons per day (gpd) and gpd/acre, and as listed below:

Basin	Gpd/acre	acres	gpd
RIB #1	14,500	1.22	17,690
RIB #2	20,138	1.40	28,193
RIB #3	53,665	1.33	71,374
RIB #4	47,090	1.58	74,402
RIB #5	66,097	1.33	87,909
RIB #6	62,935	1.45	91,256

As indicated above, if the top 2.0 - 3.0 feet of overburden were removed from RIB #1 and #2, infiltration rates would likely significantly increase. Infiltration test results suggest that an infiltration rate of approximately 7.0 inches/hr might be possible. However, the long term rate would likely be significantly less, as suggested in the previously mentioned US EPA document that indicates that 4.5% of test results should be utilized as a design rate. However, that suggested rate is based upon a short term (30 minute test) utilizing clean water for the test. In this case, a six-hour test was conducted utilizing actual effluent water. Accordingly, a higher percentage would be reasonable to assume (i.e., 10%). If 10% of the infiltration test rate were assumed to be reasonable in this case, then one might expect an infiltration rate of approximately

0.7"/hr (10% of 7.0 inches/hr) to be experienced in RIB #1 and #2, if the overburden were removed. To be even more conservative, a 4.5% rate could be utilized, which would result in an estimated rate of 0.315 inches/hr.

3.0 NEW RIB LOCATIONS

3.1 PURPOSE

Based upon current information and planned growth for the area, it appears that the existing RIBs will not be capable of accommodating future anticipated flows. Given this information, it is likely that additional RIBs will be needed and that a different location will be required to better accommodate future anticipated flows. The purpose of this portion of the investigation documented herein is to locate potential new sites for additional RIBs. To do so, existing lithologic information for the area was reviewed and additional drilling and lithologic logging was conducted, the details of which are discussed below.

3.2 SUBSURFACE LITHOLOGY

There have been several investigations conducted in this area of Cold Spring Valley over the years, with some drilling and some test pit excavations. These investigations include Van Denburgh, 1981 and Pezonella, 1991. Both of these reports were reviewed prior to BAI selecting possible drilling locations for additional drilling and lithologic logging.

Drawing 1 is a geologic map of northern Cold Spring Valley (adapted from Van Denburgh, 1981), specifically depicting the area around and north of the CSWWTF. Review of Drawing 1 indicates that there exists a surface expression of a rather large beach and delta deposit (as described by Van Denburgh, 1981) located in the middle of the extreme northern portion of the valley in an arched shaped pattern to the north and east of the CSWWTF. The presence of this coarse grained (sand) deposit was confirmed by review of lithologic logs provided in the Pezonella, 1991 report and upon field inspection. Furthermore, this sand deposit is believed to exist throughout the northern portion of the valley at varying depths, depending upon your location. To further investigate this sand body as well as lithology in general in this area, three new borings were drilled by Broadbent & Associates, Inc. (BAI), as documented below.

Drawing 1 depicts several boring locations identified as PB- and BB-. The PB-locations were drilled and logged by Pezonella in 1991 and the BB- locations were drilled and logged by Broadbent & Associates, Inc. in 2003. The PMW-1 location is a monitor well location drilled, logged, and constructed by Pezonella in 1991.

The above mentioned Pezonella borings were drilled with a truck mounted hollow stem auger drill rig with split spoon sampling equipment. Samples were collected on a five-foot interval. The BAI borings were also drilled with a hollow stem auger rig but sampling was conducted via the continuous core Moss sampling system which facilitated more accurate description of subsurface lithologic conditions, relative to the split spoon sampling technique.

Lithologic boring logs for both the Pezonella, 1991 work and the BAI 2003 work were utilized to build two geologic cross-sections (A-A' and B-B') provided herein as Figures 1 and 2 (see Drawing 1 or cross-section transects). Copies of the utilized boring logs utilized are provided in Appendix B. In both cases, the lithology was logged utilizing the universal soil classification system.

Review of these two cross-sections indicates that for the area investigated, in general, the sand deposit is present from land surface to a depth ranging from approximately 20 feet below land surface (bls) to the total depth investigated (55 feet bls). This sand is underlain by a clay unit with variable thickness. Depths and thicknesses of each unit vary depending upon your location, and the clay layer is not found to be laterally continuous. Additionally, there was clay material present at the surface in the area of BB3, which is located out in the flood plain area in the extreme northern portion of the valley. Ground water was only encountered in BB3 at a depth of approximately 39 feet bls.

The presence of the sand deposit appears to offer a good opportunity for placement of additional RIBs. This sand appears to be relatively clean with some silts and some gravels. While there is underlying clay present, it does not appear to be laterally continuous such that infiltrated water should be able to work its way vertically downward, over time, and not remain perched above the clay.

3.3 DOUBLE RING INFILTROMETER TESTING

To further investigate the potential for new RIB locations discussed above, BAI personnel conducted three double ring infiltrometer tests (BR-1, BR-2, and BR-3), one each at the three BAI drilling locations (BB1, BB2, and BB3, respectively) discussed above. Testing activities were conducted on July 16 and 17, 2003. Each test was conducted at a depth of approximately 5.0-6.0 feet bls. Each test area was set up with a four-foot diameter outer ring and a two-foot diameter inner ring. The outer ring for the at-depth tests were constructed by excavating an approximate four-foot diameter pit to the test depth. Lithology encountered during the excavation of the outer ring was consistent with the soil boring lithology discussed above. A two-foot diameter steel inner ring was driven approximately two inches into the test surface. Yardsticks were driven into the surface within the inner rings in order to facilitate water level measurements within the inner rings.

Subsequent to construction, each ring was pre-soaked and then a six-hour test was conducted for each area. Clean water was used for these tests which was provided by the Lifestyle Homes construction crew (via the Utilities, Inc. water supply well known as the Sweger Well). Water levels between the inner and outer ring were kept similar by adding water to the outer ring when necessary. Water was maintained in both rings for the duration of each test. Collected infiltration data for these tests (as well as the early tests) is provided in Table 2. Additionally, the field data sheets for these tests are provided in Appendix A.

Review of Table 2 indicates that the average infiltration rate for BR-1, measured at a depth of 5.5 feet below the existing land surface, is 4.44 inches/hour. The average infiltration rate for BR-2, measured at a depth of 5.5 feet below the existing land surface, is 6.55 inches/hour. The average infiltration rate for BR-3, measured at a depth of 5.0 feet below the existing land surface, is 1.15 inches/hour.

3.4 DISCUSSION

Based upon the above information, it appears that the area to the northeast of the existing RIBs has potential for successful installation and operation of future RIBs. Lithologic logging and infiltration testing activities suggest that two of the three areas tested (BR-1 and BR-2) offer good potential for infiltration (test rates of 4.44 "/hr and 6.55 "/hr, respectively), while the BR-3 test area was found to be of less potential (1.15 "/hr).

As discussed above, design rates for land application of treated effluent are generally a percentage of test rates. In the case of the original design for the CSWWTF, a 4.5% rate of infiltration test rates was utilized, where testing activities were short duration (30 minutes) and clean water was utilized for the test. In the case of the BR-1 and BR-2 tests, clean water was used for the test, but a much longer test was conducted (6 hours). However, to be consistent with previous design criteria for the CSWWTF, a design rate equal to 4.5% of the infiltration test result is recommended. Therefore, the design rate for infiltration for the BR-1 test area would be approximately 0.2"/hr (130,349 gpd/acre), while the design rate for infiltration for the BR-2 test area would be approximately 0.3"/hr (195,523 gpd/acre).

4.0 GROUND-WATER FLOW & SOLUTE TRANSPORT MODEL UP-DATE

BAI previously prepared (Broadbent & Associates, 2002) a ground-water flow and solute transport model as part of waste water facility planning activities for the CSWWTP conducted by the Washoe County Department of Water Resources. As part of the investigation documented herein, any new information developed in terms of infiltration rates was to be incorporated into the flow model to see if there were to be any resulting impacts to the local water resources. Review of the model input parameter data reveals that the input flows to the RIBs for 2003 were estimated at approximately 129,000 gpd. Current actual discharge is approximately 120,000 gpd, therefore, there is a minor discrepancy and little influence within the model.

Additional review of model parameter data reveals that the vertical hydraulic conductivities utilized in the model for the area under and around the current RIB locations ranged from 0.05 – 0.5 inches/hr. These rates are similar to those developed from the operation and test data for the RIBs. Therefore, there does not appear to be any new information that would significantly affect the ground-water flow model at this time.

5.0 SUMMARY/DISCUSSION

The existing CSWWTF will require expansion in order to accommodate the planned residential growth for north Cold Spring Valley. Existing RIBs are capable of handling current loads and they are operating at or above the original design rating of 0.06"/hr, with the exception of RIBs #1 and #2. However, infiltration rates for both RIB #1 and #2 can likely be significantly increased by removing the top 2.0-3.0 feet of overburden to expose underlying sands. If this overburden were to be removed, the infiltration rate for these basins might be expected to increase from ~ 0.03 "/hr to 0.315"/hr or greater. Infiltration rates for RIB #3, 4, 5, and 6 range from 0.072-0.101"/hr, based upon estimated operation data.

Several potential new RIB locations were investigated to the northeast of the existing CSWWTF. Available literature was reviewed and three new soil borings were drilled to assess the subsurface lithology in this area. A large sand body is found to be present, both exposed at the surface as well as at depth. This sand is underlain by non-continuous clay layer of variable thickness. Double ring infiltrometer tests were conducted at all three drill locations. Two of the three test areas (BR-1 and BR-2) were found to possess good infiltration rates (4.44 and 6.55"/hr, respectively). Applying the EPA recommended standard of 4.5% of the test rate for a design rate, the estimated design rates are 0.2"/hr and 0.3"/hr for BR-1 and BR-2, respectively.

BAI previously prepared a ground-water flow and solute transport model as part of waste water facility planning activities for the CSWWTP conducted by the Washoe County Department of Water Resources. Review of the model input parameter data reveals that the input flows to the RIBs for 2003 were estimated at approximately 129,000 gpd. Current actual discharge is approximately 120,000 gpd, therefore, there is a minor discrepancy and little influence within the model. Additionally, the vertical hydraulic conductivities utilized in the model are similar to those developed from the operation and test data for the RIBs. Therefore, there does not appear to be any new information that would significantly affect the ground-water flow model at this time.

It should be noted that during review of CSWWTF operation data, it was observed that water levels are rising in existing shallow monitor wells (MW-1S, 2S, 3S, and 4S). These wells were installed by the Washoe County Department of Water Resources (WCDWR) and they are monitored on a quarterly basis by the WCDWR. Monitoring data for 1997 – 2003 are provided on Figure 3 for these four wells. Review of Figure 3 demonstrates this rising trend. It was further noted that water levels in the deeper monitor wells (MW-2D, 3D, and 4D) are slowly declining and that there appears to be a direct influence on water levels in these deeper wells as a result of pumping from the nearby Sweger Well. Figure 4 depicts the declining water level trend, while Figure 5 depicts the influence of the Sweger Well on water levels in these monitor wells. While these results are not unexpected, it noted here as something that should be monitored over time, especially as the residential growth of the valley continues to increase and as water supply demand and CSWWTF discharges continue to increase.

6.0 CONCLUSIONS

General conclusions are as follows:

- The current RIBs are operating at or above the original design rating of 0.06"/hr, with the exception of RIBs #1 and #2. Infiltration rates for RIB #3, 4, 5, and 6 range from 0.072 0.101"/hr, based upon estimated operation data.
- Infiltration rates for both RIB #1 and #2 can likely be significantly increased by removing the top 2.0 – 3.0 feet of overburden to expose underlying sands. Expected infiltration rates would be approximately 0.315"/hr or greater.
- There is a sand deposit present at the surface or just below the surface throughout a large portion of the area to the northeast of the CSWWTF that offers good potential for future RIB locations.
- Estimated design infiltration rates for two tested areas (BR-1 and BR-2) are approximately 0.2"/hr and 0.3"/hr, respectively.
- Review of the ground-water flow and solute transport model reveals that the model was constructed with information that still appears to be representative of known conditions, and therefore, no modifications were necessary.
- Water levels in existing shallow monitor wells located in direct proximity to the CSWWTF are increasing while water levels in deeper monitor wells are slowly declining (apparently due to Sweger Well pumping). These water level changes were anticipated but should be closely monitoired as growth in the valley continues.

7.0 REFERENCES

- Broadbent & Associates, Inc., 2002, Ground-Water Flow and Salute Transport Model, North Cold Spring Valley, Washoe County, Nevada.
- Dewante & Stowell, 1991, Proposed Wastewater Facilities, Cold Spring Valley, Crystal Canyon Corporation, Washoe County, Nevada.
- Pezonella Associates, Inc., 1997, Geotechnical Investigation, Proposed Woodland Park, Washoe County, Nevada.
- SEA Engineers/Planners, Inc., 1985, Soils Investigation, Sweger Estate, Cold Springs Valley, Washoe County, Nevada.
- Van Denburgh, A.S., 1981, Water Resources of Cold Spring Valley, A Growing Urban Area Northwest of Reno, Nevada, USG Open File Report 80-1287.

TABLES

Table 1: RIB Operation and Testing Data for the Cold Spring Valley Waste Water Treatment Facility, Cold Spring Valley, Washoe County, Nevada.

RIB Performance ant of Percent of sst Rate Design Rate*	36%	50%	134%	118%	165%	157%
Ring Test Rate	Not Tested	42% 0.4%	Not Tested	Not Tested	Not Tested	11% 19%
Ring Test Depth From Surface (ft)	Not Tested	Surface 4.5	Not Tested	Not Tested	Not Tested	Surface 4.0
Double Ring Test Results (in/hr)	Not Tested	0.07	Not Tested	Not Tested	Not Tested	0.88
Loading Time Period	1/16/03 - 1/21/03 5/15/03 - 5/21/03	9/17/02 - 9/30/02 3/10/03 - 3/20/03	9/30/02 - 11/5/02 3/20/03 - 4/9/03	1/21/03 - 2/12/03 5/21/03 - 6/18/03	12/11/02 - 1/16/03 2/12/03 - 3/10/03	11/5/02 - 12/6/02 4/9/03 - 5/15/03
Infiltration Rate (in/hr)	0.019 0.025 0.022	0.029 0.033 0.031	0.083 0.081 0.082	0.067 0.078 0.072	0.095 0.108 0.101	0.087 0.107 0.097
Infiltration Rate (gpd/acre)	12,563 16,438 14,500	19,014 21,262 20,138	54,309 53,022 <i>53,665</i>	43,528 50,651 47,090	61,833 70,362 66,097	56,406 69,464 62,935
Infiltration Rate (ft/day)	0.039 0.050 0.044	0.058 0.065 0.062	0.167 0.163 0.165	0.134 0.155 0.145	0.190 0.216 0.203	0.173 0.213 0.193
Basin Area (Acres)	1.22 1.22 Average:	1.40 1.40 Average:	1.33 1.33 Average:	1.58 1.58 Average:	1.33 1.33 Average:	1.45 1.45 Average:
Basin Area (ft2)	53,000 53,000	60,950	57,750	68,800 68,800	57,800 57,800	63,000 63,000
Time to Dissipate (days)	8 8	8 8	4 4	4 4	7.	7 2
Volume Loaded (ft3)	71,515 96,244	152,921 159,070	481,219 319,476	330,838	471,595	414,383
Volume Loaded (gal)	535,000 720,000	1,144,000	3,600,000 2,390,000	2,475,000	3,528,000	3,100,000
Loading Rate (gal/day)	107,000	88,000 119,000	100,000	112,500	98,000	100,000
Days Loaded (days)	ന ന	£ 5	36	28 22	36	36
CSWWTP Loaded RIB No. (days)		2 2	တက	4 4	2 2	မ မ

* The design rate for the RIBs was 40,000 gpd (0.06"/hr), as derived by Dewante and Stowell (1991) and Pezonella (1991).

Table 2: Double Ring Infiltrometer Test Results, Cold Spring Valley, Washoe County, Nevada.

Ring Test Number	Date	Infiltration Rate (in/hr)	Depth Below Surface (ft)
RIB2-S	6/26/2003	0.074	0.0
RIB2-D	6/26/2003	7.15	4.5
RIB6-S	6/26/2003	0.88	0.0
RIB6-D	6/26/2003	0.50	4.0
BR-1	7/17/2003	4.44	5.5
BR-2	7/17/2003	6.55	5.5
BR-3	7/17/2003	1.15	5.0

DRAWINGS

EXPLANATION

Quaternary geology modified from E.C. Bingler (Bingler and Trexler, 1975). Bedrock geology modified from R.L. Nielsen (unpublished Nev. Bur. Mines and Geology map, 1965).

Adapted from Van Denburgh, 1980

Base from U.S. Geological Survey 1:24,000 Reno NW, 1967 (photorevised 1974)

CONTOUR INTERVAL 20 FEET

DATUM IS SEA LEVEL

Beach and delta deposits

1-1-6-24

Fan, sheetwash, and flood-plain alluvial deposits

JURASSIC(?) AND TRIASSIC

Metavolcanic and metasedimentary rocks

Fault. Dashed where approximately located; dotted where buried

Cross Section Lines

Existing Waste Water Treatment Facility

BB1 O Borehole and/or test pit location

BROADBENT & ASSOCIATES, INC. ENGINEERING, WATER RESOURCES & ENVIRONMENTAL

2000 Kırman Avenue Reno, Nevada 89502

North Cold Spring Valley Geologic Map, Cold Spring Valley, Nevada

Drawn July 21, 2003 by M. Gerlinger Approved July 22, 2003 by D. Guerrant

Drawing 1

FIGURES

Figure 3: Depth to Water versus Time for MW-1S, 2S, 3S, and 4S, Cold SpringValley, Washoe County, Nevada.

Figure 4: Depth to Water versus Time for Monitor Wells MW-2D, 3D, and 4D, Cold Spring Valley, Washoe County, Nevada.

Figure 5: Depth to Water & Sweger Well Pumping Data versus Time for MW-2D & 4D, Cold Spring Valley, Nevada.

APPENDIX A

RIB TEST DATA SHEETS

Date:_	6/26/2003
Test Location:_	RIB2-S
Test Depth:_	Surface

Time	Water Level Re	ading (Inches)	Elapsed Time	Infiltration	Infiltration Rate	
Time	Before Filling	After Filling	(Minutes)	(Inches)	(Inches/Hour)	Notes
11:00	2.75	2.75				Still full from 6/25/03, outer ring dry
12:01	2.88	2.88	61	0.13	0.12	Not Filled (NF)
13:57	2.88	2.88	116	0.00	0.00	NF
15:51	3.00	3.00	114	0.13	0.07	NF
17:00	3.13	End	69	0.13	0.11	End of test
			,	Average	0.074	
			•			
						,

Date:	6/26/2003
Test Location:	RIB2-D
Test Depth:	4.5 Feet

Time	Water Level Re	eading (Inches)	Elapsed Time	Infil t ration	Infiltration Rate	
Time	Before Filling	After Filling	(Minutes)	(Inches)	(Inches/Hour)	Notes
11:27	Dry	3.50				Infiltration is very fast
11:44	6.88	6.88	23	3.38	8.80	Not Filled (NF)
11:54	8.00	0.50	10	1.13	6.75	Trock i mod (146)
12:51	7.75	7.75	57	7.25	7.63	NF
13:07			16	1.75	6.56	NF .
	9.50	0.50	67	7.88	7.05	
14:14	8.38	0.50	72	7.25	6.04	
15:26	7.75	0.50	75	8.13	6.50	
16:41	8.63	0.50	46	6.00	7.83	
17:27	6.50	End				End of Test
				Average	7.15	
				Average	1.15	
,				· · · · · · · · · · · · · · · · · · ·		

Date:	6/26/2003
Test Location:	RIB6-S
Test Depth:	Surface

	-	Water Level Re	ading (Inches)	Elapsed Time	Infiltration	Infiltration Rate	Notes
	Time	Before Filling	After Filling	(Minutes)	(Inches)	(inches/Hour)	140163
F	40.00	D	4.00				
-	10:26	Dry	4.00	68	0.88	0.77	N. 4 - 11 - 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /
\parallel	11:34	4.88	4.88	55	0.75	0.82	Not Filled (NF)
-	12:29	5.63	5.63	80	1.13	0.84	NF
L	13:49	6.75	6.75	52	0.75	0.87	NF
-	14:41	7.50	2.50	105	1.63	0.93	
	16:26	4.13	End				End of test
					Average	0.88	
-							
╟							
\parallel							
$\ \cdot\ $							
\parallel		}					,
\parallel					,		
┢							
l							
∦							
╟					ļ		
ľ							
-							
-							
\parallel							
					-		-
-							
∦							
L			1				<i>(</i> 1)

Date:_	6/26/2003
Test Location:	RIB6-D
Test Depth:	4.0 Feet

Time	Water Level Re	ading (Inches)	Elapsed Time (Minutes)		Infiltration Rate	Notes
Time	Before Filling	After Filling		(Inches)	(Inches/Hour)	Notes
10:29	Dry	4.00				
11:37	4.50	4.50	68	0.50	0.44	Not Filled (NF)
12:30	4.88	4.88	53	0.38	0.42	NF .
13:50	5.50	5.50	80	0.63	0.47	NF
			62	0.75	0.73	INF
14:52	6.25	3.00	97	0.75	0.46	
16:29	3.75	End				End of test
				Average	0.50	
			<u></u>			
						
<u> </u>						
				-	<u> </u>	
			<u> </u>			

Date:	7/17/2003
Test Location:	BR-1
Test Depth:	5.5 Feet

Time	Water Level Re	ading (Inches)	Elapsed Time	Infiltration	Infiltration Rate	Notes
11110	Before Filling	After Filling	(Minutes)	(Inches)	(Inches/Hour)	
10:15	NA	1.00				Infiltration is fast
10:52	3.88	1.00	37	2.88	4.66	
12:27	8.38	1.00	95	7.38	4.66	
13:28	5.38	1.00	61	4.38	4.30	
15:02	7.88	1.00	94	6.88	4.39	
16:15	6.13	End	73	5.13	4.21	End of Test
10.10	5.10	Liid				
				Average	4.44	
		,				
	•					
	, .		ļ			
						

Date:_	7/17/2003
Test Location:	BR-2
Test Depth:_	5.5 Feet

Time Before Filling After Filling Clapsed Time (Minutes) Clapsed Time (Inches) Clapsed Tim	
10:26 3.13 0.50 21 2.63 7.50 11:08 5.00 0.50 42 4.50 6.43	
10:26 3.13 0.50 21 2.63 7.50 11:08 5.00 0.50 42 4.50 6.43	
11:08 5.00 0.50 42 4.50 6.43	
11.08 5.00 0.50	
27 2.88 6.39	
11:35 3.38 0.50 28 3.13 6.70	
12:03 3.63 0.50 34 3.75 6.62	
12:37 4.25 0.50 21 2.38 6.79	
12:58 2.88 0.50 40 4.25 6.38	
13:38 4.75 0.50	
14:15 4.25 0.50 37 3.75 6.08	
14:42 3.50 0.50 27 3.00 6.67	
15:24 4.88 0.50 42 4.38 6.25	
16:05 4.75 End 41 4.25 6.22 End of Test	
10.00 4.70 End	
Average 6.55	
	• • • • • • • • • • • • • • • • • • • •

Date:	7/17/2003
Test Location:	BR-3
Test Depth:	5.0 Feet

Time	Water Level Re	ading (Inches)	Elapsed Time	Infiltration	Infiltration Rate	Notes
Time	Before Filling	After Filling	(Minutes)	(Inches)	(Inches/Hour)	Notes
10:32	Dry	0.63				Infiltration is very slow
			103	2.13	1.24	
12:15	2.75	2.75	94	1.88	1.20	Not Filled
13:49	4.63	0.50				
16:02	2.75	End	133	2.25	1.02	End of Test
				Average	1.15	
		,				
				<u>-</u>		·
		. :				
	:					
	•					
,						
					<u> </u>	
<u> </u>			1			
						-
	 		1			
				 		1
			<u> </u>			

APPENDIX B

BORING LOGS

	LITHOLOGIC	C LOG OF I	BORING BB1			
CLIENT: <u>Kennedy Jenk</u>	s Consultants	_	PROJECT NUMBER: <u>03-02-116</u>			
ADDRESS:5053 Mud	Springs Rd, Cold Springs NV	_	DATE: 7/14/03			
DRILLING CO/METH: .	WESTEX/Hollow Stem Auger with	n MOSS sample		START: 14:20		
LOGGED BY:M. E. GERI	INGER DESCRIPTION:			STOP: 18:35		
COODINATES: NORT	HING: 39 42 49.33432 EAS	TING: 119 58	19.86020	BORING ELEVATION: 5088.3'		
	LITHOLOGIC DESCRIPTION LITHOLOGIC DESCRIPTION					
GL	Light brown sand, SP	20		Light grey sand, SP		
4		22—		Greenish grey sandy clay, CL		
6 —	Moist	24-		Light brown sand, locally fining upwords, SP		
8 —	Color change to red brown	26-		Red brown and grey sandy clay with interbeds up to 4" of stiff clay, CL		
10 —		28-				
12—	Interbeded grey and red brown san oxidized lenses, lense of gravel	ds, 30-				
14 —		32-				
16—	Stiff grey clay, CL . Light grey sand, SP	34 -				
18 36 BROADBENT & ASSOCIATES, INC. Prepared by: M. Gerlinger Approved by: D. Guerrant Page No.: 1 of 2 ENGINEERING, WATER RESOURCES & ENVIRONMENTAL						

LITHOLOGIC LOG OF BORING BB1				
CLIENT: Kennedy Jenks Consultants	PROJECT NUMBER: 03-02-116			
ADDRESS:5053 Mud Springs Rd, Cold Springs NV	DATE: 7/14/03			
DRILLING CO/METH: WESTEX/Hollow Stem Auger with MOSS	sampler START: 14:20			
LOGGED BY:M. E. GERLINGER DESCRIPTION:				
	119 58 19.86020 BORING ELEVATION: 5088.3'			
LITHOLOGIC DESCRIPTION LITHOLOGIC DESCRIPTION				
36	54			
_	_			
Red brown and grey clay interbeds of sandy clay with interbeds up to	56—			
4" of stiff clay, CL Water level	-			
40	58—			
	_			
42	60—			
End of borehole, total depth 42.5'				
-	_			
44	62—			
	-			
46—	64—			
_	_ _			
48—	66—			
_	_			
50—	68—			
52—	70—			
54	72			
Total Depth: 42.5'	BROADBENT & ASSOCIATES, INC.			
Prepared by: M. Gerlinger Approved by: D. Guerrant P	BROADBENT & ASSOCIATES, INC. age No.: 2 of 2 ENGINEERING, WATER RESOURCES & ENVIRONMENTAL			

LITHOLOGIC LOG OF BORING BB2					
CLIENT: Kennedy Jenk	CLIENT: Kennedy Jenks Consultants PROJECT NUMBER: 03-02-116				
ADDRESS:5053 Mud	Springs Rd, Cold Springs NV	·	DATE: <u>7/15/03</u>		
DRILLING CO/METH:	WESTEX/Hollow Stem Auger with MC	OSS sampler	START: 09:30		
LOGGED BY:M. E. GERL	INGER DESCRIPTION:				
		G: 119 58 09.45844	BORING ELEVATION: 5097.1'		
	LITHOLOGIC DESCRIPTION		LITHOLOGIC DESCRIPTION		
GL		20			
-		-	Light grey sand, SP		
2 —	Light brown sand and silt, SP	22 —	Section 1		
			Sandy light brown clay, CL		
4 —		24—	Agent An Annagement Andrews An		
-		_	The Control of Control		
6 —	t	26—	The Control of the Co		
-		_	Sand lenses and stiff clay lenses		
8 —		28—	THE AT THE CONTROL OF T		
_	Moist		And Control of the Co		
12	Color change to light grey, decreased silt and clay	30	Modern Control of the		
_			Topical Control Contro		
14—		20	The Management of the Control of the		
	Color change to darker grey, granitic pebbles	32—	Color change to lighter brown,		
			lenses of decomposed granite up to 1" thick		
16		34	And in a second control of the contr		
	Color change to lighter grey, gravely lenses	White the second	Man Andrews An		
18—	gravery lenses	36	Color change to darker brown, stiff clay		
		A separation of the control of the c	West wife of the Shark S		
20		38	ACTION AND ACTION ACTION AND ACTION AND ACTION AND ACTION AND ACTION AND ACTION AND ACTION ACTION AND ACTION AND ACTION		
Prepared by: <u>M. Gerlinger</u>	Approved by: <u>D. Guerrant</u>		BROADBENT & ASSOCIATES, INC. ENGINEERING, WATER RESOURCES & ENVIRONMENTAL		

ŀ

LI	THOLOGIC LOG OF I	BORING BB2	
CLIENT: Kennedy Jenks Consultants	·	_ P	ROJECT NUMBER: 03-02-116
ADDRESS: 5053 Mud Springs Rd, Cold Springs NV			ATE: 7/15/03
DRILLING CO/METH: WESTEX/Hollow	Stem Auger with MOSS sample		START: 09:30
LOGGED BY:M. E. GERLINGER DESCRIPT			STOP: 13:30
COODINATES: NORTHING: 39 42 53.02			RING ELEVATION: 5097.1'
	GIC DESCRIPTION		LITHOLOGIC DESCRIPTION
36	54		
	-		End of borehole, total depth 55' Water not encountered
38 Sandy light b	prown clay, CL 56 -	_	· ·
The product of the control of the co		_	
40	58-	_	
Section 1.		-	
42—	60-	-	
any site desiration for the contract of the co	-	-	·
44—————————————————————————————————————	62	-	
Security and the first support and the first state of the first state		-	,
46	64	_	
and the state of t		_	
48	66		
And the second of the control of the		_	
50 — Consideration of the Cons	68		
An experimental and a second control and a second c		_	
52	70	-	
Committee and Co		-	
54	72		<u> </u>
Total Depth: 55'		60 130/	DADBENT & ASSOCIATES, INC.
Prepared by: M. Gerlinger Approved by:	D. Guerrant Page No		ERING, WATER RESOURCES & ENVIRONMENTAL

ı

	LITHOLOGIC LOC	G OF BO	ORING BB3	•	
CLIENT: Kennedy Jenks		PRO	JECT NUMBER: <u>03-02-116</u>		
					E: 7/15/03
ADDRESS: 5053 Mud	Springs Rd, Cold Springs NV			DAI	D
DRILLING CO/METH:	WESTEX/Hollow Stem Auger with MOSS	Sampler			START: 15:10
LOGGED BY:M. E. GERL	INGER DESCRIPTION:			_	STOP: <u>18:45</u>
COODINATES: NORTI	HING: 39 43 05.42701 EASTING:	119 58 5	5.01557	BORIN	IG ELEVATION: 5115.0'
	LITHOLOGIC DESCRIPTION				LITHOLOGIC DESCRIPTION
GL		18			
2	Light brown clay, CL	20 —			
4		22—			Color change to light brown silty sand, with 1"-2" lenses with more or less sand and silt
6	Dark grey silt layer, MH Light brown sand, little gravel, SP	24			
8 —	Red brown and light grey sands, SP	26—			
10—	Light grey silty sand,	28-			
12-	>1/2" clay lenses, SW	30—			
	Light grey clean sand, SW	-			Light brown clay, CL
14	Light grey silty sand, SM	32-			
-	Red brown sand, SP	-	-		Light grey silty sand, thin red brown interbeds, SP
16 —	Color change to light grey sand, >1" clay lenses	34			Light brown clay, with 1/16"-1/8" clean sand lenses, CL
18————————————————————————————————————					
Prepared by: M. Gerlin	ger Approved by: D. Guerrant	Page No.:	1 of 2	ENGINEER	NG, WATER RESOURCES & ENVIRONMENTAL

LITHOLOGIC LOG OF BORING BB3				
CLIENT: Kennedy Jenks Consultants			PROJECT NUMBER: 03-02-116	
ADDRESS: 5053 Mud	Springs Rd, Cold Springs NV		DATE: 7/15/03	
DRILLING CO/METH:	WESTEX/Hollow Stem Auger with	MOSS sampler	START: 15:10	
	LINGER DESCRIPTION:		STOP: <u>18:45</u>	
		TING: 119 58 55.01557	BORING ELEVATION: 5115.0'	
	LITHOLOGIC DESCRIPTI		LITHOLOGIC DESCRIPTION	
36	Light brown clay, with 1/16"-1 clean sand lenses, CL	/8" 54 ············	End of borehole, total depth 55'	
38	Red brown silty sand, SP	56 —	Water not encountered	
40	Red brown sandy clay, CL	58—		
42—	Red brown silty sand, locally fining down to a 2" clay lense, S	P 60-		
44—		62—		
46 —	Repeated fining down sequences every 2'-4'	64—		
48		66		
50 —		68—		
52 —		70 —		
54		72		
Total Depth	h: 55'		BROADBENT & ASSOCIATES, INC.	
Prepared by: M. Gerlin	nger Approved by: D. Guerrant	Page No.: 2 of 2	ENGINEERING, WATER RESOURCES & ENVIRONMENTAL	

Laboralory Tests (and other information)	Oriving Resistance Blows/F1	Moisture Content (%)	Ory Densily (pcf)	Depth (ft) Sample	Equipment CME 55, H	OF BORING ollow Stem Au Daio 10/	ger
•	12			5 -	BROWN SAND (SP-SM with silt, medi		
	46			10 -	Color Change to L Increasing Silt C Dense Below 10.5	ontent and Bed	coming
	36			15	GREY BROWN SAND (dense, dry with	SP) red staining	
	28			20	GREY GREEN SILT (4L)	
	14			25 -	with sand, very with red staini	stiff, moist	
	36			30 -	dense, moist wi	th red stainin	g
Elevation Reference: See Log of Boring B-1				40-			
Associates, Inc.			Job No.3072.01N Appr. / 11m Date 10/23/91		LOG OF BORING B-3 STAL CANYON WASTEWATE Washoe County, Nev	•	14

	•						
Laboratory Tests (and other information)	Driving Resistance Blows/Ft	Moisture Content (%)	Dry Density (pcf)	Depth (ft) Sample	LOG OF BORING Equipment CME 55, Hollow Stem Au Elevation Date 10		
	17				DARK BROWN SILT (ML) with sand, very stiff, dry, with organics		
	21	·		5 -	BROWN SAND (SP) medium dense, dry		
	20			10 -	Color Change to Red Brown Bel 10.0 Fe et		
		į			Color Change to Brown Below 1	2.0 Feet	
	28			15 - X · · ·	.		
	54			20	Becoming Dense Below 17.0 Fee	t	
	45			25 —	DARK BROWN SANDY CLAY (CH) very stiff, moist		
					BROWN SILTY SAND (SM)		
	23			30	medium dense, dry		
Elevation Reference:	. ,			35 - X			
See Log of Boring B-1		,	·		No Free Water Encountered		
·				10-			
A 00-00-011-0			3072.01N		LOC OF BODING & L		
Pezonella		Job N	0		LOG OF BORING B-4		
Arrociater, Inc.		Appr.	10/0		CRYSTAL CANYON WASTEWATER FACILITY Washoe County, Nevada		
Consulting Engineers and Geologists		Date_	10/2	1/91			

Consulting Engineers and Geologists

